Assignment 3

Hand in: Section 6.4, no 10, Supplementary Exercises (1) (2) and (3).

Deadline: Feb 1, 2019.

Section 6.3: no 10b, 11b, 14; Section 6.4: no 9, 10.

Supplementary Exercises

1. Establish the following limits: For $\alpha > 0$,

(a)
$$\lim_{x \to \infty} \frac{x^{\alpha}}{e^x} = 0 .$$

$$\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0 \ .$$

$$\lim_{x \to 0^+} x^{\alpha} \log x = 0 .$$

Note: (b) and (c) follow from (a).

2. Show that for $x \in [-1/2, 1)$,

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Hint: Consider $x \in [0,1)$ and [-1/2,0) separately.

3. Let

$$q(x) = -12 + x^2 + 3x^4.$$

Determine the coefficients in

$$q(x) = a_0 + a_1(x-1) + a_2(x-1)^2 + a_3(x-1)^3 + a_4(x-1)^4$$
.

4. Let f be infinitely differentiable function. Suppose that there is a polynomial p of degree n such that for some $\delta, C > 0$,

$$|f(x) - p(x)| \le C|x - x_0|^{n+1}, \forall x \in [x_0 - \delta, x_0 + \delta].$$

Show that p must be the n-th Taylor polynomial of f at x_0 .

A Generalized Mean-Value Theorem

A parametric curve, by definition, is simply a continuous map $\gamma = (f_1, f_2, \dots, f_n)$ from some [a, b] to \mathbb{R}^n . We are concerned plane curves n = 2 only. It is called a regular parametric curve if further $\gamma' = (f'_1, f'_2)$ exists and does not vanish, that is, $|\gamma'| = \sqrt{|f'_1|^2 + |f'_2|^2} > 0$ on (a, b).

Generalized Mean-Value Theorem. Let γ be a regular parametric curve on [a,b] on the plane. There exists some $c \in (a,b)$ and $k \neq 0$ such that

$$\gamma(b) - \gamma(a) = k\gamma'(c) .$$

Remark 1 Take $\gamma(x) = (x, f(x))$ where f is continuous on [a, b] and differentiable on (a, b). Then γ is a regular parametric curve. By this theorem,

$$(b-a, f(b) - f(a)) = k(1, f'(c))$$
, some $c \in (a, b)$.

That is, (f(b) - f(a))/(b - a) = f'(c), the original Mean-Value Theorem.

Remark 2 In general, looking at each component we have

$$f_1(b) - f_1(a) = kf_1'(c)$$
, $f_2(b) - f_2(a) = kf_2'(c)$.

When f'_1 never vanish on (a, b), we obtain

$$\frac{f_2(b) - f_2(a)}{f_1(b) - f_1(a)} = \frac{f_2'(c)}{f_1'(c)} .$$

This is Cauchy Mean-Value Theorem. Our generalized mean-value theorem does not put an extra assumption on f_2 , instead it requires the parametric curve be regular.

Sketchy Proof. the Generalized Mean-Value Theorem. WLOG assume $\gamma(a) = (0,0)$. Rotate the axes so that the vector from $\gamma(a)$ to $\gamma(b)$ become horizontal, that is, from (0,0) to $(\alpha,0)$ where $\alpha = (f_1^2(b) + f_2^2(b))^{1/2}$. Let the new curve be γ_1 . Now image a horizontal line is dropped from infinity. It will first rest on a point P on the rotated curve $\{\gamma_1(t) : t \in (a,b)\}$ if we assume it is somewhere positive, otherwise replace it by $-\gamma_1$. Parallel to the x-axis, the tangent at $\gamma_1(c)$ is of the form $(\xi,0)$ for some non-zero ξ . Hence, $(\alpha,0) = k(\xi,0)$ where $k = \alpha/\xi$. Rotating back to the original curve, the desired result follows. The interested reader may fill in the details.